Ulmer Chemiker mit ERC Consolidator Grant ausgezeichnet: Maßgeschneidertes Materialdesign für Zukunftstechnologien

10. December 2020

Der Ulmer Chemiker Prof. Carsten Streb hat einen hochkarätigen ERC Consolidator Grant über 2 Millionen Euro eingeworben. In seinem geförderten Projekt SupraVox will Streb, der an der Universität Ulm und am Helmholtz-Institut Ulm forscht, das Materialdesign für Zukunftstechnologien revolutionieren. Dafür muss er unter anderem die Kontrolle über Struktur und Reaktivität von Metalloxiden von der atomaren Ebene aufwärts erlangen. Projektziel sind Materialien nach Maß – für unter anderem hochleistungsfähige Batterien, die Quantenelektronik oder Informationstechnologie. Prof. Carsten Streb engagiert sich auch für den wissenschaftlichen Nachwuchs – als Juror beim Jugend forscht-Regionalwettbewerb, den die Innovationsregion Ulm jährlich ausrichtet.

Passgenaue Materialien könnten die Entwicklung leistungsfähiger Batterien, hochgenauer Sensoren oder innovativer Informationstechnologien erheblich beschleunigen. Bisher galt ein solches Materialdesign nach Maß von der atomaren Ebene aufwärts jedoch als Zukunftsmusik. Dies will Professor Carsten Streb mit seinem neuen Projekt „SupraVox“ ändern: Der Chemiker plant, den Polymerisationsprozess von Metalloxiden zu ergründen und letztlich die Kontrolle über Struktur und Reaktivität solcher Materialien zu erlangen. Dafür hat der Wissenschaftler, der am Uni-Institut für Anorganische Chemie I und als Principal Investigator am Helmholtz-Institut Ulm (HIU) forscht, einen ERC Consolidator Grant über rund 2 Millionen Euro eingeworben. Mit diesem Förderinstrument ermöglicht der Europäische Forschungsrat (ERC) herausragenden Wissenschaftlern über fünf Jahre die Umsetzung wegweisender Konzepte und stärkt so die europäische Forschungslandschaft.

Meilenstein auf dem Weg zu effizienten Energietechnologien
Das Projekt SupraVox nimmt eine der großen Herausforderungen der Materialchemie an: Die Forschenden um Professor Carsten Streb wollen die kontrollierte Synthese von Metalloxiden und somit ein gezieltes Materialdesign ermöglichen – von der atomaren Ebene bis hin zu Nano- und Mikrostrukturen. Solche planvoll hergestellten Materialien wären ein Meilenstein auf dem Weg zu effizienten Energietechnologien, zur klimafreundlichen Mobilität und zur industriellen Katalyse. „In der Materialwissenschaft haben Computersimulationen große Fortschritte gemacht: Sie erhöhen das Verständnis für chemische Prozesse und ersetzen viele Laborexperimente. Die Metalloxid-Synthese wird allerdings noch immer nach dem Trial-and-error-Prinzip durchgeführt. Mit dem Projekt SupraVox wollen wir dies fundamental ändern und eine kontrollierbare Metalloxid-Polymerisation etablieren“, erklärt Streb. Dafür fehlten den Forschenden bisher ein detailliertes Verständnis der Polymerisationsprozesse sowie die Kontrolle über die gezielte Verknüpfung von einzelnen Bausteinen zu langen Molekülketten.

Die idealen Bausteine für eine solche einstellbare Materialklasse sind molekulare Metalloxide, so genannte Polyoxometallate (POMs). Bei diesen Monomeren können Struktur und Reaktivität auf molekularer Ebene verändert werden. Über viele Jahre hat die Gruppe von Carsten Streb Pionierarbeit zu Polyoxometallaten geleistet. Die Forschenden entwickelten neuartige, selbstheilende Antikorrosions-Beschichtungen (POM-IL), multifunktionelle Komposite zur Wasseraufbereitung oder hochaktive Katalysatoren zur Sonnenlicht-getriebenen Erzeugung von Wasserstoff. Dennoch verhindern Wissenslücken, etwa hinsichtlich des Übergangs von einzelnen POM-Molekülen zu polymeren Metalloxiden, ein wirklich kontrolliertes Materialdesign.

Weltweit führend in der Charakterisierung funktionaler Nanomaterialien
Im Forschungsvorhaben SupraVox setzen Streb und seine Arbeitsgruppe auf Vanadium-basierte POMs (V-POMs): Anhand dieser Modell-Monomere wollen sie die Polymerisationschemie im Detail verstehen, beeinflussen und zielgenau das Wachstum von V-POM-Ketten ermöglichen. Dadurch werden neue chemische und elektronische Eigenschaften zugänglich, die verschiedensten Hochtechnologien zugutekommen.
Bis dahin gilt es, zahlreiche Fragen zwischen molekularer- und Festkörperchemie zu beantworten: Welche supramolekularen Mechanismen steuern die Polymerisation? Wie interagieren die Polymerketten mit ihrer Umgebung? Und wie hängen Struktur, elektronische Eigenschaften und Reaktivität der V-POM-Polymere zusammen? Den Bogen in die Anwendung schlagen hingegen Untersuchungen an den Grenzflächen von Vanadiumoxid-Polymeren, die auf Elektrodenoberflächen platziert werden. Unter anderem mithilfe von hochauflösender Elektronenmikroskopie sollen so Erkenntnisse für Batterie- und Katalysatordesign gewonnen werden. Insgesamt wird SupraVox anhand von V-POMs Polymerisationskonzepte aufzeigen, die auf andere Metalloxide übertragen werden können. Letztlich sollen Trial-and-error-Synthesen durch vorhersehbares Materialdesign ersetzt werden.

Die Forschungsumgebung an der Universität Ulm und am benachbarten, auf die Batterieforschung spezialisierten Helmholtz-Institut Ulm ist ideal. Beide Einrichtungen gelten als weltweit führend in der Charakterisierung funktionaler Nanomaterialien und verfügen über die höchst entwickelten Analysesysteme – vom Supermikroskop SALVE über Elektrochemie-Labore bis hin zu Simulationen, womöglich mithilfe des Supercomputers JUSTUS 2.
„SupraVox wird uns Zugang zu einer bisher unbekannten Materialklasse mit vielfältigen Anwendungsgebieten eröffnen. Ich bin überzeugt, dass wir wichtige Entwicklungen für Zukunftstechnologien wie nachhaltige Energiespeicherung und Quantenelektronik ermöglichen werden“, resümiert Professor Carsten Streb.

Prof. Carsten Streb will mithilfe eines ERC Consolidator Grants das Materialdesign revolutionieren. (Foto: Eberhardt/Uni Ulm)
Categories
Archives